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Application of Nonlinear Localization to the Optimization
of a Vibration Isolation System

Tariq A. Nayfeh,* Edward Emaci,*and Alexander F. Vakakis’
University of lllinois at Urbana—Champaign, Urbana, Illinois 61801

We consider a passive nonlinear mechanical vibration isolator consisting of discrete mass, stiffness, and damping
elements. We show that, by suitably designing the stiffness nonlinearities, we can induce localized nonlinear normal
modes (NNMs) in this system. These are unforced oscillations analogous to the normal modes of classical linear
vibration theory, with energies that are spatially confined. When the isolator with localized NNMs is subjected to
harmonic excitations in certain frequency ranges, the resulting resonances become similarly localized and the level
of the transmitted undesirable vibrations is greatly reduced. Hence, nonlinear localization can provide a valuable
tool for developing improved vibration and shock isolation designs, otherwise unattainable using linear theory.
In addition, we develop a technique that systematically optimizes the localized NNMs of the unforced isolator,
by localizing the vibrational energy in a way that is compatible to the vibration isolation objectives. This ensures
minimal transfer of unwanted disturbances when a harmonic excitation is applied to the system.

Introduction

N many engineeringapplicationsinvolving vibrating machinery,

there is a need to reduce the vibration level to conform with
performance objectives. For example, consideringthe vibrations of
a spacecraftinduced by spinning momentum flywheels, if the level
of the disturbances that are transmitted to the main body of the
spacecraft are above a certain threshold, they may adversely affect
the ability of performanceobjectives, such as the precision pointing
of sensitive devices. Hence, it is desirable to minimize the transfer
of unwanted vibrations to the structure over the specified frequency
ranges of interest.

Traditional techniques for preventing the transfer of vibra-
tional energy from components to the structure include the use of
elastomers,' vibration isolation paddings, damping tapes, springs,
rubber mounts and cork padding,>~* passive vibrationabsorbers,’-¢
and, in many instances, active controllers’-”-3 Base isolation sys-
tems are also used in order to prevent the transfer of seismic energy
into buildings. The majority of such systems are designed so that
the isolators are flexible and the structure is quite stiff, and the vi-
brational energy is dissipated through the use of dampers. Such
systems, in addition to preventing damage to the building, are also
thought to prevent damage to internal components.’

We propose a new design technique for vibration isolation based
on the concept of nonlinearnormal mode (NNM).!%~!2 The passive
vibration isolation element is not regarded as an external addition
to the system, but rather an integral part of the casing of the vi-
brating component. Stiffness nonlinearities are then used to induce
nonlinear mode localization,'!:1>-14 thus confining the vibrational
energy'® away from the main body to be isolated. In contrast with
previously studied nonlinear vibration absorbers,'®!” the present
techniqueimplementsnonlinearmode localizationfor vibrationiso-
lation and formulates a design methodology for inducing optimum
nonlinear localization properties in the vibration isolation system.

Mathematical Model

The simplified model of the vibrationisolationsystem considered
is shown in Fig. 1. It consists of the vibrating component (mass
my) located in a case (mass m,) that is attached to an intermediate
grounding mass (m3). The intermediate mass is connected to the
structure to be isolated. Following the aforementioned example,
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mass m; would be a simplified model of a spinning momentum
flywheel that is enclosed in a case represented by mass m1,. The case
is, in turn, attached to the supporting mass m; that is connected to
the main body of the spacecraft. The combinationof masses 7, and
m, will be referredto as the upper substructure(USS), whereas mass
m3 will be referred to as the lower substructure (LSS). In addition,
such a structure can be thought of as a reverse base isolation system,
where instead of preventingthe ground vibrations fromaffectingthe
structure, the structure’s vibrations are prevented from affecting the
ground.

In the system of Fig. 1, the attachment of mass m, to mass m, is
through a general nonlinear stiffness denoted as f(y) and a linear
viscous damper denoted by ¢;. Mass m, is connected to mass m1; by
means of the linear stiffness k and the lineardamper ¢,. Finally, mass
mj is grounded to the main structure by the nonlinearstiffness g(y)
and the linear damper c¢3. The displacement of mass m; is denoted
by x;, and the equations of motion assume the form

mx; + (1 —x) + f(x1 —x) = P(1)
myXa+ 1 (3 1)+ f(xz_X1)+%(Xz_X3)+ alo_x)=0 (1)
mM3Xs + ¢33+ (s _X) + g(x3) + k(x3 _x,) = 0

where the dot representsthe derivative with respectto time and P(¢)
denotes the external excitation applied to the USS.

We begin by demonstrating that localized vibrations can exist in
this system, and we show the effects on the dynamics of increasing
the order of the nonlinearities. Then, we introduce a new design
methodology by which an optimized nonlinear localized mode is
induced in this system for the purpose of vibration isolation. We
analyze the dynamics of Eqgs. (1) using two different approaches
based on the methods of multiple scales and harmonic balance.'®!°
The aim of the analysis is to show that, by suitable design of the
linear and nonlinear coefficients, we can induce localized NNMs in
the system and improve its vibration isolation properties over wide
frequency ranges.

Analysis by the Method of Multiple Scales

We first study the nonlinear localization properties of system (1)
using the method of multiple scales. This enables us to obtain a
set of modulation equations governing the time evolution of the
amplitudes and phases of the system’s response. We introduce the
following parametrizations for the nonlinear stiffnesses:

S = fiy+ efuy™

where m and n are odd integers and isl
denoting the smallness of the nonlinca

and

(2

1 is a small parameter
stiffness coefficients. The

g(y) = g1y + &g)"
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Fig.1 Model under consideration.

introduction of the small parameter in the problem is necessary
to perform the perturbation analysis that follows. Furthermore,
we introduce the coordinate transformations u = x; _ x,, v =
myx; + msyx,, and w = x;. Here u represents the relative motion
of mass m; with respect to mass m;,, v is a scaled motion of the
center of mass of the USS, and w denotes the motion of the LSS.
The aim of the analysisistorender w as small as possibleto achieve
small transmission of vibration to the main body of the system.
Using the preceding coordinate transformations, introducing the
new nondimensional time variable T = (u, f1)"/?t — or, where
Wy = [(my +my)] mym,], and rescalingu as u __u( fr] f1)" =",
we express the equationsof motion in the following nondimensional
form:

U+ u+ gu" + knv + kiou + kisw + dyu+dpy + dlgfv]

= (&F/mi)(fl f1)="" =Y cos[(a o) 7]
v+ E[kzlv + koot + kpsw + doy v + dyu + d23“¢’]

= (&F/ a?) cos[(al o) 7] (3)
W+ (1 + eHw

+ gw" + kv + knu + kazw + dyw + dyyut + dggif] =0

wherethe force P(¢) = &F cos(rt)actingonmass m1; isassumedto
be harmonic and of small amplitude and the coefficients in Eqgs. (3)
are defined as follows:

k k
ki= _———a, ki = ——, kiz = ——
! mlmﬁ,ulaza 2 m3 Ly o2 " mzaza
1 1
dy=—
11 a( i+ ¢ mﬁul)
k
d = _C—;aa di; = iaa by = ————
myn; Ly o ma mymy Ly 02
_(@m_1)
R S S S
22__n12,ula2 a’ BT =’ “\ A
dy = — 2 e 1 d= 2
n= myma o T Tmymoa’ BT =

k

=md(l+el),  ha= e
gr=moc(1+ €A 3 mlmzm.%,ulaz

k 1 k
= k3 = , = MO0

myms G a 3 m; 08 S

1

polete e 1

mszQo myns U oa

C‘ -
d33 = 2 k= Sk

Tmymyms &

Differentiationin Egs. (3) is now with respect to the new time vari-
able 7. We note that the parameter A in the preceding relations

provides a measure of the detuning between the linear frequency
of the relative motion and the linear frequency of the intermediate
mass, whereas the parameter a is a measure of the relative strength
of the nonlinear vs the linear coefficient in f(y).

For € = 0, Egs. (3) represent two uncoupled linear oscillators
with identical natural frequencies equal to unity and a rigid body
motion governed by v. We now study the response of Egs. (3) for
small (butnonzero) €. To this end, we introduce the new scaled time
variable = @t and the following relation for the frequency of the
harmonic excitation:

w=aoa=1+ o 4

where o is a frequency detuning parameter. Relation (4) repre-
sents a challenging vibration isolation problem because the forc-
ing frequency is assumed to be in the neighborhood of the two
linearized natural frequencies of Eqgs. (3). Under such conditions,
large-amplitude oscillations are anticipated for w and the problem
of vibration isolation is challenging. However, as we show subse-
quently, even under such demanding conditions, nonlinear local-
ization can provide a valuable tool for ensuring small steady-state
responses of w over wide frequency ranges.

Taking into account Eq. (4), applying the chain rule of differenti-
ation, and keeping terms only up to @8), we rewrite the equations
of motion as

ull + u + 8[2614//+ u" + kiv + kpu + kisw + dyul

+ dipvl + diswl] = €B cos(?)
vil + 8[26\/”+ ko1v + koot + kosw + doy v/ + doul + d23W’]

= (eF/ o) cos(?) )
wh+ (1 + eHhw + 8[20w11+ w" 4+ k31 v + kpou + k3w

+ dsywi + dyyul + dz3vl] = 0, B = (F/md)a

where primes denote differentiation with respect to the new time
t = wrt. Applying the method of multiple time scales,'® we expand
u, v, and w in the following form:

u(®y = uo(To, Th,..) + au(To, Th, .. ) + ...
V(}): vo(To, Th, .. )+ evi(To, T, .. ) + ... 6)
w(@) = wo(To, Th,...)+ ewi(To. i, .. ) + ...

where the slow and fast time scales are defined as 7, = £7. The
derivatives in Eqs. (5) are expressed with respect to the slow and
fast time scales as
d( g d¥( o
~ = Dy + €D and =
dt 0 ! dr?

= D} 4+ 2¢Dy D, + @82)
M

where D; = 0( g/ 0T;. Substituting Egs. (6) and (7) into Eqgs. (5)
and setting the coefficients of like powers of € equal to zero, we
obtain a series of subproblems governing successive orders of ap-
proximation.

The leading-order approximation to the dynamic responses are
governed by the following linear equations that are obtained by
considering the @80) terms in Egs. (5):

Déuo +uy=0
Dive=0 ®)
Déwo +wy=0
The solutions of this set are given by
uo(To, i) = A(T)e™ + A(Te™
vo(To, T1) = Bi(T1)To + Bx(Th) )
wo(To, T) = C(T))e’™ + C(T1)e"
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where A4, C, and B; are complex functions of the slow time scale
T; and the overbar represents the complex conjugate. These slowly
varying functions are computed by proceeding to the next order of
approximation taking into account @81) terms in Egs. (5),

Déul + u; = _2DyDyuy _kipug _QGDéuo _kiivo —kizwg
—ug —dyiDouo —diaDovo —di3 Dowo + B cos(Tp)

Dévl = _knuy —2DyDyvy _20D§v0 _lka1vo _kazwy
_dy Doug —dy Dyvy —dos Dowo + (F of) cos(Tp) (4o

Déwl + wy = _kspuy —k31vo —2DyDywy k33w
_QGDéwo —wo —Awy —dyy Dottg —dy3 Dyvy —dy Dywy

Substituting the solutions of the linear system (9) into Eqs. (10) and
simplifying yields

Diuy + uy = [_2jA/_(k12 20+ jdn)A_(kis + jdi3)C
_’,an(m+l)/2:4(m_l)/2 + (aF/Z)]ejTO +cc
—ki(BiTo + By) _di» By + NST

Divy = [_knA_ jdnA_ky3C _ jdysC + (m f12)]e/™

(11)
+cc _2B( _kn(B\To+ By) _dy B

Déwl +w, = [_ZjCI_(k33 _20+ jdy + AHC
_(k32+ jd32)A_nfC(n+1)/26(n_1)/2]ej]'0 +cc
— k31 (B, Ty + By) _ds33 By + NST

where
m!

"= [m+ D720 [(m _ 172!
n!
=+ D2 (D2

and where cc stands for the complex conjugate of the preceding
terms and NST stands for nonsecular terms.'®-'* To ensure that the
series in Egs. (7) is uniformly valid for all times ¢, the terms By, B,
and the secular terms in Egs. (11), i.e., the terms on the right-hand
sides that lead to unbounded responses, must be set equal to zero.
Hence, we obtain the following set of solvability conditions gov-
erning the slow time evolutions of the complex amplitudes:

2jA _(kiy 20+ jdi)A_ (ki + jdi3)C
_m/,A(m+1)/2;1(m_1)/2 + (B/2) =0
Bi(T)) = B,(T1) =0 (12)
—2jC1 _(ks3 =20+ jds1 + NC _(ksa + jds;) A
_n CU DRG0 —

from which we conclude that vy = 0. Introducing the polar repre-
sentation

AT) = 1a,(T)e/PT  and

C(Th) = Lay(Ty)e/P ™
(13)

where a;(T}) and 3(T}) are real functions of 7;, into Egs. (12) and
separatingintoreal and imaginary parts, we obtainthe following set
of modulation equations governing the amplitudes and phases:

af + tkysay sin y+ dy a + 1disas cos(fy )+ (B/2) sin f, = 0
ak _ sksay siny + Sdyay + $dyna; cos(By — ) = 0
—a B + thkipay — oay + kizaz cos(By — ) + mp(ai/ 2)"

—%d13a3 sin(fy — i) —(B/2)cos B =0 (4
—a3 Y + hszas — ous + Skaar cos(By — Bi) + ns(asl2)"
+%d32a1 sin(f — ) + %M,z =0

First, we investigate the structure of the NNMs of the undamped
and unforced system. These nonlinear oscillations are analogous to
the normal modes of classicallinear vibrationtheoryand correspond
to synchronous motion of the system.!! The study of the NNMs of
the system is performed for two main reasons: 1) to demonstratethat
the systemofFig. 1 canbe designedto possess localized NNMs with
corresponding energies mainly confined to the USS and away from
the LSS (which we want to isolate) and 2) to gain an understanding
of the structure of the resonance curves of the forced and damped
system. Indeed, the nonlinear resonances of the forced and damped
systemare expectedto occurin neighborhoodsof NNMs, ! in direct
similarity to linear vibration theory.

Hence, we set the ¢; and P (or equivalently,the d;; and F) equal
to zero in Egs. (14), which yields

af + $kizaz siny = 0 (152)
af _ 3ksay siny = 0 (15b)

aa; 7/’_%511513(1633 —ki2) _%)«1511513 + myaz(a/2)"
—nyai(asl2)" + (kiza3 _kza}) cosy = 0 (15¢)

where ¥ = [ _ f3. This is an autonomous system of equations
whose stationary solutions (correspondingto af = af = y/ = 0)
yield the #9l) approximations to the NNMs of the unforced and
undamped System.

Combining Egs. (15a) and (15b), we obtain the relations

ng[l{[ll + k13a§a3 =0 ikgzalz + k13a32 = pZ

or
af[kn + k1362] =p (16)

where 7 is a constant of integration representing the (conserved)
energy of the undamped unforced system and ¢ = a3/ a;. Imposing
the stationary conditionson Eqgs. (15), we obtainthe followingequa-
tion governing the ratio of the amplitudes a; and @; on a nonlinear
normal mode of the system:

m /
{)«1 + ks _ki» i[k3z(1/c) _k136]}(k32 + leCz)( b

+n/»(%pc)n_l(k32 + klgcz)(m_n)/z _m/(%p)m_1 =0
y = km, k=0,1,2,... (17)
Defining
I = A+ ks k12 _ n13(n11 + I’nz) ﬁ 1)
- ko ’ T omm X\ A
and
_P
k32

and noting that k3 = ua’ks,, we rewrite expression (17) in the
following nondimensional form:

[cLi(1_,uazcz)](1+,uazcz)(’"—1)/2+n/»(n/Q)(”—l)k§Z—3)/2
ch(l + #a262)(m_n)/2 _n1/(17/2)("’—l)kgg"S)DC =0

y=km, k=0,1,2,... (18)
Equation (18) governs [correctto (71)] the ratios of the amplitudes
of u and w on an NNM of the unforced and undamped system of
Fig. 1. Regarding the parametersin Eq. (18), L is a nondimensional
structural detuning, u is a nondimensional mass ratio, and 1 is a
nonlinearity to coupling ratio (because the strength of the nonlin-
earities of the system is a function of the level of energy p and
ks, 1s a nondimensionalcoupling stiffness). Based on the preceding
analysis, the + and __ signs in Eq. (18) correspond to even or odd
multiples of 7 for y.

In Fig. 2a, we graphically depict the amplitude ratio ¢ vs the
detuning parameter L forky, = 1, m = n = 3, p = 1, and varying
values of 1 (without loss of generality, the phase difference is set
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b) Dependence of ¢ on the degrees of nonlinearity m and n for the
strongly localized NNM

Fig.2 NNMs of the system: a) m=3, n=3, 4t =1, k3; =1 and b) (1),
m=0and n=0 (linear case); (2), m=3 and n=3; (3), m=5and n=3;
4), m=7 and n=3; and (5), m=9 and n=3.

equalto ¥ = 0). Notethatthe ratioof the nonlinearityto the coupling
parameter greatly affects the structure of the NNMs of the system:
for 1 = 0 (the linear case) the system possesses the linear normal
modes, whereas for increasing7, a bifurcationoccursand the system
possesses four NNMs. For negative values of L and large 7, one
branch of NNMs becomes strongly localized to the USS of the
system because it corresponds to small values of ¢. Although such
a localization occurs also in the linear system (with n = 0), the
stiffness nonlinearities greatly enhance it. This is shown in Fig. 2b,
where the aforementioned localized branch is depicted in a decibel
scale for k3, = 1, u = 5,1 = 3, and various degrees of USS and
LSS stiffnessnonlinearitiesm and n (m = n = 0 correspondsto the
linear system). A perturbationanalysis shows that for the localized
NNM branch ¢ is approximately given by

1
Cz 1ym=1,(m_3)/2 1
L_my (D" k==

which depends on the nonlinearity of the USS. From Fig. 2b we
note that as m and n increase the localization greatly increases.
Moreover, the strength of localizationdepends mainly on the degree
of nonlinearity n of the USS and not so much on the nonlinearity
of the LSS. As a result, the motion is spatially confined to the USS,
and the oscillationof the LSS becomesnegligibly small. It is evident
that such a localized NNM guarantees enhanced vibration isolation
for the nonlinear system compared to the linear one.

The preceding results demonstrate that the system under consid-
erationcan be designedto possessa localized NNM with vibrational
energy mainly confined to the USS and away from the main body
to be isolated. As will be shown, the localized NNM gives rise to
localized resonances of the forced and damped system and, thus,
to improved vibration isolation of the system under periodic forc-
ing. Reconsider Eqs. (14) with nonzero ¢; and F. The nonlinear
resonances of the system are obtained by imposing the stationarity
conditions ¢f = a4 = 0 and ff{ = B = 0, which are necessary for
steady-state periodic oscillations of the system. The resulting set of
four nonlinear algebraic equations is given by

%k13a3 sin Y+ %dual + %dlgag COS(ﬁg —ﬁl) + (B/2) sinﬁl =0
_ékﬂal sin Y+ %dﬂag + %dﬂal COS(ﬁg —ﬁl) =0

skiar _ ouy + tkizas cos(By — Br) + my(ar/2)"
(19)
—3dysaysin(fy ) —(B/2)cos B = 0

thasay — ouy + tkyay cos(By — ) + ny(as/2)"
+%d32a1 sin(y _B) + %Aﬁ,z =0

They are solved numerically to obtain the amplitudes and phases
of the nonlinear resonances. These equations are analogous to
relations (15) of the unforced, undamped case. Once the stationary
values for the amplitudes and phases are computed, the steady-state
responses are approximated as follows:

u(t) = ay cos[(1 + eoyar + Pl + @8)
v(t) = @8) (20)
w(t) = az cos[(1 + eo)ar + L] + ®®

where subscripts 0 denote stationary values. The effectiveness of
the vibration isolation is judged by the smallness of the amplitude
as of the steady-state oscillation of the LSS of the system because
only then is the level of transmitted vibrationto the ground of Fig. 1
small.

A numericalexample is performedto show the effect of nonlinear
mode localization on the structure with steady-state motions near
the linearized resonances. The stability of solutions is computed
by finding the eigenvalues of the Jacobian matrix of the evolution
equations (19). The branches of the nonlinear resonances of the
system with the parameters

m=09, n=73, k= 21.0225, fi=1, fr=4
my =1, m, = 2.53554, ms = 5.07108
(21
¢ = 4.5, ¢, = 3.5, c3 = 5.0, A= _8.79123
n=3, L=_75, B =10, and £=10.030

are shown in Fig. 3. These curves are generated by numerically
solving Egs. (20) while varying the frequency detuning o of the
external excitation. The dotted lines represent the corresponding
backbone curves'® that depict the variation of the ratio ¢ vs ofor the
undamped, unforced case. The solid lines represent stable motions
that correspondto periodic oscillationsof Eqs. (1). The dashed lines
representsolutionsthatare unstable and, thus, not physicallyrealiz-
able. The onset of the unstable region occurs through a saddle-node
bifurcation. This system possessesa strongly localized NNM whose
backbone curve originates near o = 0.84 and a nonlocalized NNM
with a backbone curve beginningnear o= _2.74.

With this example we have demonstrated that nonlinear mode
localization, induced by designing a system with passive nonlinear
springs, gives rise to localized steady-state motion in the frequency
range close to the correspondinglocalized backbone curve. On this
branch, the steady-state amplitude a; of the LSS is small, whereas
the corresponding amplitude a; of the USS is orders of magni-
tude higher (magnitude of a, is on the same order of magnitude as
would be the linear response). In the frequencyrange of the localized
branch, the steady-state oscillations of the forced system are spa-
tially confined mainly to the upper substructure, leadingto enhanced
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Fig. 3 Nonlinear resonances of the system with a strongly localized
NNM and the parameters m = 9, n = 3, k = 21.0225,f; =1, & = 4,
m =1, m = 2.53554, m; = 5.07108, ¢; = 4.5, ¢, = 3.5, ¢c; = 5.0,
A = _879123,n = 3, L = _7.5, B = 10, and € = 0.030: solid
and dashed lines denote stable and unstable quasiperiodic steady-state
motions, respectively, and dotted lines indicate the backbone curves.
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Fig.4 Time history response for the system with the same parameters
asin Fig.3and 0 = 0, 12, and 25.

vibration isolation and therefore substantially smaller motions for
the lower substructure.

To validate the perturbation analysis, the original equations of
motion (1) are numerically integrated with this set of parameters
and initial conditions close to the values obtained in the analysis. In
Fig. 4 the time traces of displacement « and w for three different &
are shown. At o = 0, the amplitude of @, begins to grow, whereas
the amplitude of a3 has begunto decay. At o= 12, the system is at
its greatest point of localization so the amplitude of a; is large, i.e.,
the USS is vibrating with the same order of magnitude as the linear
system, yet the amplitude of a3 is extremely small, as predicted
by the perturbation analysis. Last, at ¢ = 25, a jump has already
occurred, so the system has settled back to small linear motions
away from resonance.

The preceding analysis proves that the system under considera-
tion can be designed to possess localized NNMs, which, in turn,
can lead to improved vibration isolation performance. In the next
section we develop an optimization procedureto compute the set of
system parameters, i.e., masses,dampers,and stiffnesses, that gener-
ate an optimally localized motion over a specified frequency range.
The optimization analysis will be carried out using the method of
harmonic balance.!”

Optimization Analysis

To simplify the algebra involved in the analysis, we introduce
a different nondimensionalization from that used earlier. Hence,
considering the original Eqs. (1), we define the following nondi-
mensional quantities:

X =x/1, X =xaf 1, X3 =x3/1, T=w (22
where / is the undeformed position of mass mj; (cf. Fig. 1) and @is
a characteristic frequency. Substituting Egs. (12) into Egs. (1) and
simplifying yields

X+ m%)(?c{ —xh) + ﬁf(% —_Xy) = 12(122
M+ (N 4 o (R )
+nfaf (Fr %) + m%)(}g _I)=0 (23)
W+ m%)}u m%)()‘cg _X)

1 .- k- -
+lmg&fg(x3) + e (x3_x)=0
where the prime denotes the derivative with respect to the nondi-
mensional time 7. The optimization technique is developed for the
case of cubic nonlinearities, and it can be similarly extended to
higher-degree nonlinearities. Thus, we assume that the nonlinear
stiffnesses are given by

T =aly+aly’,  20)=Tnly+ Bl (24)

Setting
Ve - ol mi Y m?y
Oq:lml(x)z, %:aj—’ 7/1:—1_7/—1’ _;2/_2
a ms3 o4 ms o4
(25)

and substituting the result into Egs. (23), we obtain

M4 X +F %+ (X %) = P(D)
M4 Mppn (X3 X)) — Miy(Xy —X;) — Mpos(x) —X)°
+ kMR %) + (X4 X)) =0 (26)
XY+ Xk + Moz (XE —X3) + %1%
+ X3 4 kM My (X _X2) = 0
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where

My, = my/ my, My = myl mj, k= 7(/1_04

= (cif m)amil o, o = (cof my)r/myil o (27)
s = (c3l my)y/mil o

To further simplify the analysis, we introduce the coordinate trans-
formationsu = X1 —_X», w = X3, and v = M»X; + X». Hence, u
representsthe relative motion inside the USS, v is a scaled displace-
ment of the center of gravity of the USS, and w is the motion of the
LSS. Then, the equations governingu, v, and w are given by

M, H
ull + 1+ Mp)+ —— ul _ ———vIl+ ow!
( 12) T Mlz'uz] T+ My, Mo
Mk Mk
+| 1+ My, + —22 _ v 4+ kMpw
( 12 1+M12) 1+ M, .
+(1+ Mp)asu® = P(1)
M, Mo Mk
/. ul + vl _thw! _ ——=—u 28
I B VR et el B VR 28)
Mlzk o
—— v _kMpw = M, P(T
T+ Mo 12 12 P(7)
My, Mys Ly Mo Ly
7/ ! _ / M. 7
wil + T+ Mo e MUV + (M3 + Moz pir)w
M23M122k M23M12k

— My M k)w B3 =0
1+M12u 1+M12V+(y1+ 2 Mikpw -y

Applying the method of harmonic balance,'® we express the
steady-state periodic solution of Egs. (28) in terms of a sum of har-
monics as

N
X; = ZA,,,,- cos[m(a@t + [3)] (29)

wherei = 1, 2, 3. Substituting Eq. (29) into the equations of motion
and equating the coefficients of identical harmonics to zero, we
obtain a set of m i algebraic equations governing the amplitudes
A,,i. These equations are usually solved for wand 4,,; in terms of
A\ to yield the equations that describe the steady-state response of
the system.

As in the preceding section, we consider first the undamped and
unforced system to determine the structure of its NNMs. Hence, we
set 1; and P(#) = 0 in Egs. (28) and consideronly the first harmonic
inEq. (29)to computea leading-orderapproximationto the solution.
Thus, we seek a solution in the form

u = a, cos(@r) V=ru w = ru (30)
We note that r, representsthe ratio of the amplitudesof w tou, and it
is the quantity that we want to minimize. The quantity r| represents
the ratio of the amplitudes of v to u. Substituting Eqs. (30) into
Eqgs. (28) and equatingthe coefficients of cos( @t) equalto zero, we
obtain the following nonlinear algebraic relations:

Mk

3
~(1+ M, 2
T+ M, + 4( + Mp)osa,

ai| 1+ M, +

+ ———r + Mykr _()t)2 =0
1+M12 1 1252
Mk Misk

T+ My 14+ M,

ML Mk MMk
1+ My = 1+ M

ai

Fl_ @O _Mlzkrz] =0 (3]

ay ry

3
+()/1 + Mlezgk_(x)z)rz + 27’3"12”23] =0

There are two possible solutions:a; = 0 (which is a trivial solution)
and

= Mk My + (1 + M)
' Mpk _(1+ Mp)@?
5 4—1‘412](_[1-'—1‘412(1-'—]()_(1)24-1‘412](}"2](1)2
a; = —
'3 os[(1+ Mp)w>? — Mik]

(32a)

(32b)

where r, is governed by
n@ _ (1 4+ M) + [Mi(&F _ 1) + Mys(1+ M)k}
+ (nl o) {Miok _[1+ Mip(1+ B)]@ }r3
—_ (%l o) My ka?rs + MEyMyzke? =0 (32¢)

Equations (32a) and (32b) can be used to compute the ratio r; and
the amplitude a, as functions of the frequency @. Equation (32c¢)
governs the dependence of the ratio r, on the frequency and the
system parameters. The design objective is to minimize the transfer
of energy from the USS to the LSS of the system or, equivalently,
to minimize the ratio r,. Hence, to induce the optimal localization
properties into the system, one needs to minimize the number and
magnitudes of the real roots of Eq. (32¢) overa specified frequency
range. Minimizing the number of real roots minimizes the number
of NNMs and, thus, the number of nonlinear resonance branches.

In what follows, we apply the method of constrained variation®
to minimize the quantity

N
f= zlrz,»(m)]2 (33)

where the r; are solutionsof Eq. (32c) at the discrete frequencies @
where the optimizationis performed. The parametersk, o5, M;;,and
¥; in Eq. (32c¢) are considered as the design variables whose values
are computed by the optimization routine, whereas the variable @
representsthe frequencyat which the optimizationis performed. The
optimization is performed using the IMSL routine DNCONF?! that
employs the successive quadratic programming method developed
by Schittkowski.?> The constraint equation (32¢) is nonlinear and
results in a plethora of locally minimal optimized solutions. These
local minima depend on the initial guesses and may not reflect the
best global optimization possible. Hence, to increase the probability
of finding a true optimized result, random sets of initial guesses are
generated and used to start the optimization routine. In Table 1, the
results of three such optimizationruns are summarized. Cases 1 and
2 represent fairly good optimizationresults, and case 3 represents a
poor result.

Although a formal sensitivity analysis is not performed, the au-
thors note that the small optimized value of k M, is consistent with
previous works on linear and nonlinear localization where it was
found that a prerequisite for localization in a system composed of
substructuresis weak coupling stiffness. The NNMs of the unforced
and undamped system of case 2 are depicted in Fig. 5 as functions
of the frequency. For o< 1.0788, Egs. (35) possess only the trivial
solution. At = 1.0788, a bifurcation occurs and the two NNMs
depicted in Fig. 5 develop. Similar curves were generated for cases
1 and 3, but in the interest of space are omitted. The differences
in magnitude of the NNMs for cases 1-3 are the same as those
predicted by the value of /" in the optimization.

Table1 Optimization results with f minimized at four discrete
frequencies; «y = 1.00,1.1,1.2, 1.5

Lower  Upper Results

Parameter  bound  bound Case 1 Case 2 Case 3
kM, 0.00001 10.0 0.0001430 0.0001 1.31722

My, 0.1 3.0 0.12001 0.16389 0.1000

My 0.1 100.0 28.3284 18.1690 0.1000
N 0.1 100.0 187.6287 95.2359 172.6641
13l 05 _60.0 60.0 _35.6760 6.51466 4.23117

f 0.2248 0.2942 0.3975
__10 _12 _4

X 10 X 10 X 10




1384 NAYFEH, EMACI, AND VAKAKIS

100 . T

50 | ; [

-50 :, : \ i

.00 L i : i I :
0 0.5 1 1.5 2 25 3

a) Amplitude of a;

0 0.5 1 15 2 25 3

b) Amplitude of a,

310° T T T T

210°

110°

[¢]

-110° Fooe

-210° Boeereimnend R ] s I

310° © i i ; i

¢) Amplitude of a3

Fig. 5 Backbone curves of the unforced and undamped system of
case 2.

After optimizing the NNMs and inducing optimal localization
properties, we compute the steady-state responses of the opti-
mized system by considering Egs. (28) with y; 7’ 0and P(7) =
F cos(@r). Assuming a solution of the form

u = a; cos(wr) + b, sin( @)
v = a, cos(@r) + by sin(@1) (34)
w = a3 cos(@T) + b sin(@T)

(where the sine and cosine terms are used due to the presence
of damping), substituting into Egs. (28), and equating the coeffi-
cients of cos(wr) and sin(@rt) to zero, we obtain the following
algebraicequations, which are analogousto the unforced, undamped
relations (31):

a1(1+Mlz+lk+L;;u_a}) _az%
/11(1+M12)+ Mlz] +a2kM12+b21/iA(Zu

+ b3t 0+ 20‘3(1 + Mlz)(af + albf) _F=0

_al[ﬂl(1+M12)+ Al/l[/l[u]w_'- 1_/;121‘(22

+b1( 1+ M+ % _wz) —azlh O+ bz%ﬁu

3
+ b3k Mis + Zoej(l + M) (B + alb) =0

uid) R
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Fig.6 Resonance curves of the forced and damped system with param-
eters of case 2 and F = 0.1, ; = 0.001, u> = 0.001, and u3 = 0.001;
solid and dashed lines denote stable and unstable steady-state motions,
respectively, and dotted lines represent the corresponding linear re-
sponse.

kM? kM, M
—a e O = _a3lez_blu
14+ M, 1+ M, 1+ M,
L
b O_bszs_MpF =0
+ 21 ¥ M, 3 M3 12
,Ulez Ho kM122
—O_ar——— W+ a o__b——=—
T+ M, 1+ My, W T+ M,
kM,
by————— _b3kM;, =0
+ 21+M12 sk M
lezzMzz lez
- ( kM, Moy _ o?)
11+M12 1+M12 +a; n+ 12 M3
Mo M» Mo Mo Mo
b——————w_b,———w+b M>3) @
+ 0 1+ M, 21+M12 + b3(Us + Ly Mos)
E 3 2)
+ 47/3(513 +azby) =0
Mo My» My Mo M
w__ My)o
-7 o 11 M, az(Ms + o Ma3)
kM2, Moy kMis Mo
+bh—2—=_p =+ by(y + kM Myy _ o)
11+M12 21+M12 3\n 12M>3
3 3
+Zy3(b +a2b) =0 (35)
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Fig.7 Resonance curves of the forced and damped system with param-
eters of case 3 and F = 0.1, y; = 0.001, ;, = 0.001, and u3 = 0.001;
solid and dashed lines denote stable and unstable steady-state motions,
respectively, and dotted lines represent the corresponding linear re-
sponse.

These equations were solved numerically with the parameters
listed in Table 1 and g = 0.001, F =0.1, u; =0.001, p, = 0.001,
and 3 =0.001. The stability of the solutions was obtained using
Hill’s infinite determinant.!” The forced response of the system for
case 2 is shown in Fig. 6, where the solid-dashed line represents
the nonlinear response, and the dashed line represents the linear
response. Similarly, the forced response of case 3 is shown in Fig. 7.
For all cases, the amplitude of w is orders of magnitude smaller than
thatof u or v (notice that the verticalscale in the plots is in decibels).
Inaddition, the effectof the nonlinearity s to attenuatethe maximum
amplitudes of the linear resonances.

Finally, to verify that the use of a single harmonic expansion is
sufficient for capturingthe dynamics of the system, we numerically
integrated Eqgs. (28) with initial conditions identicalto the theoret-
ical predictions for steady-state motions correspondingto case 2.
The integration was performed using a fifth-order Runge-Kutta?®
with error tolerance set to 1 y, 10~'? and an adaptive time step. The
amplitudes of the responses 1n each case are nearly those predicted
by the single-harmonic expansion, and in addition, the frequency
content of the numerical time responses appear to contain only one
harmonic. These results indicate that the use of a single harmonic
in the theoretical analysis is justified. The results of one of the nu-
merical integrations is presented in Fig. 8. The initial conditions
used correspond to @ = 1.5002 with initial conditions on the un-
stable branch. We expect the solution shown to be unstable, and the
simulation agrees with our theoretical prediction. In fact, had we
allowed the integration to proceed for a longer time, the response
would have settled to that of the lower stable branch.
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Fig. 8 Unstable steady-state response of the system with parameters
of case 2, w=1.5002, and initial conditions on the unstable branch (cf.
Fig. 8).

Conclusions

In this study, we have shown that the use of nonlinear stiffnesses
can greatly enhance the vibration isolation properties of a passive
mechanical isolator. Indeed, such a system can be designed to pos-
sess stable localized NNMs with most of their energy confined to
a predetermined subsystem, away from the main body that needs
to be isolated. When isolators with localized NNMs are subjected
to harmonic excitations, in certain frequency ranges, the resulting
resonances become similarly localized, and the level of transmitted
undesirable vibrations is greatly reduced. Hence, nonlinear local-
ization can provide a valuable tool for developing improved vi-
bration and shock isolation designs, otherwise unattainable using
linear stiffness elements. In addition, we have developed a new de-
sign technique to optimize systematically the localized NNMs of
the isolator. This is performed by localizing the vibrational energy
of the isolator in a way that is compatible and beneficial to the
vibration isolation objectives. Following the outlined optimization
procedure, we alter the solution space describing the dynamics and
ensure minimal transfer of unwanted disturbances.
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