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Application of Nonlinear Localization to the Optimization
of a Vibration Isolation System
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University of Illinois at Urbana± Champaign, Urbana, Illinois 61801

We consider a passive nonlinearmechanical vibration isolator consisting of discrete mass, stiffness, and damping

elements. We show that, by suitably designing the stiffness nonlinearities,we can induce localized nonlinearnormal
modes (NNMs) in this system. These are unforced oscillations analogous to the normal modes of classical linear

vibration theory, with energies that are spatially con® ned. When the isolator with localized NNMs is subjected to
harmonic excitations in certain frequency ranges, the resulting resonances become similarly localized and the level

of the transmitted undesirable vibrations is greatly reduced. Hence, nonlinear localization can provide a valuable
tool for developing improved vibration and shock isolation designs, otherwise unattainable using linear theory.

In addition, we develop a technique that systematically optimizes the localized NNMs of the unforced isolator,
by localizing the vibrational energy in a way that is compatible to the vibration isolation objectives. This ensures

minimal transfer of unwanted disturbances when a harmonic excitation is applied to the system.

Introduction

I N many engineeringapplicationsinvolvingvibratingmachinery,
there is a need to reduce the vibration level to conform with

performance objectives.For example, considering the vibrations of
a spacecraft induced by spinning momentum ¯ ywheels, if the level
of the disturbances that are transmitted to the main body of the
spacecraft are above a certain threshold, they may adversely affect
the ability of performanceobjectives,such as the precisionpointing
of sensitive devices. Hence, it is desirable to minimize the transfer
of unwanted vibrations to the structure over the speci® ed frequency
ranges of interest.

Traditional techniques for preventing the transfer of vibra-
tional energy from components to the structure include the use of
elastomers,1 vibration isolation paddings, damping tapes, springs,
rubber mounts and cork padding,2±4 passivevibrationabsorbers,5 , 6

and, in many instances, active controllers.5 , 7, 8 Base isolation sys-
tems are also used in order to prevent the transfer of seismic energy
into buildings. The majority of such systems are designed so that
the isolators are ¯ exible and the structure is quite stiff, and the vi-
brational energy is dissipated through the use of dampers. Such
systems, in addition to preventing damage to the building, are also
thought to prevent damage to internal components.9

We propose a new design technique for vibration isolation based
on the concept of nonlinearnormal mode (NNM).10±12 The passive
vibration isolation element is not regarded as an external addition
to the system, but rather an integral part of the casing of the vi-
brating component. Stiffness nonlinearities are then used to induce
nonlinear mode localization,11, 13 , 14 thus con® ning the vibrational
energy15 away from the main body to be isolated. In contrast with
previously studied nonlinear vibration absorbers,16, 17 the present
techniqueimplementsnonlinearmode localizationforvibrationiso-
lation and formulates a design methodology for inducing optimum
nonlinear localization properties in the vibration isolation system.

Mathematical Model
The simpli® ed model of the vibrationisolationsystem considered

is shown in Fig. 1. It consists of the vibrating component (mass
m1) located in a case (mass m2) that is attached to an intermediate
grounding mass (m3). The intermediate mass is connected to the
structure to be isolated. Following the aforementioned example,
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mass m1 would be a simpli® ed model of a spinning momentum
¯ ywheel that is enclosed in a case representedby mass m2. The case
is, in turn, attached to the supporting mass m3 that is connected to
the main body of the spacecraft.The combinationof masses m1 and
m2 will be referredto as theupper substructure(USS), whereasmass
m3 will be referred to as the lower substructure (LSS). In addition,
such a structurecan be thoughtof as a reverse base isolation system,
where insteadof preventingthe groundvibrationsfromaffectingthe
structure, the structure’s vibrations are preventedfrom affecting the
ground.

In the system of Fig. 1, the attachment of mass m1 to mass m2 is
through a general nonlinear stiffness denoted as f (y) and a linear
viscousdamper denoted by c1 . Mass m2 is connected to mass m3 by
means of the linearstiffness Åk and the lineardamperc2 . Finally,mass
m3 is grounded to the main structure by the nonlinear stiffness g(y)
and the linear damper c3 . The displacement of mass m i is denoted
by xi , and the equations of motion assume the form

m1 Èx1 + c1( Çx1 ¡ Çx2) + f (x1 ¡ x2) = P(t )

m2 Èx2 + c1( Çx2 ¡ Çx1)+ f (x2 ¡ x1)+ Åk(x2 ¡ x3)+ c2( Çx2 ¡ Çx3) = 0 (1)

m3 Èx3 + c3 Çx3 + c2( Çx3 ¡ Çx2) + g(x3) + Åk(x3 ¡ x2) = 0

where the dot represents the derivativewith respect to time and P(t)
denotes the external excitation applied to the USS.

We begin by demonstrating that localized vibrations can exist in
this system, and we show the effects on the dynamics of increasing
the order of the nonlinearities. Then, we introduce a new design
methodology by which an optimized nonlinear localized mode is
induced in this system for the purpose of vibration isolation. We
analyze the dynamics of Eqs. (1) using two different approaches
based on the methods of multiple scales and harmonic balance.18, 19

The aim of the analysis is to show that, by suitable design of the
linear and nonlinear coef® cients, we can induce localized NNMs in
the system and improve its vibration isolation properties over wide
frequency ranges.

Analysis by the Method of Multiple Scales
We ® rst study the nonlinear localization properties of system (1)

using the method of multiple scales. This enables us to obtain a
set of modulation equations governing the time evolution of the
amplitudes and phases of the system’s response. We introduce the
following parametrizations for the nonlinear stiffnesses:

f (y) = f1 y + e fm ym and g(y) = g1 y + e gn yn (2)

where m and n are odd integers and j e j ¿ 1 is a small parameter
denoting the smallness of the nonlinear stiffness coef® cients. The
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Fig. 1 Model under consideration.

introduction of the small parameter in the problem is necessary
to perform the perturbation analysis that follows. Furthermore,
we introduce the coordinate transformations u = x1 ¡ x2 , v =
m1x1 + m2x2, and w = x3 . Here u represents the relative motion
of mass m1 with respect to mass m2 , v is a scaled motion of the
center of mass of the USS, and w denotes the motion of the LSS.
The aim of the analysis is to render w as small as possible to achieve
small transmission of vibration to the main body of the system.
Using the preceding coordinate transformations, introducing the
new nondimensional time variable s = ( l 1 f1)1/ 2t ´ a t , where
l 1 = [(m1 + m2)/ m1m2], and rescalingu as u ! u( fm / f1)1/ (m ¡ 1) ,
we express the equationsof motion in the followingnondimensional
form:

Èu + u + e [um + k11v + k12u + k13w + d11 Çu + d12 Çv + d13 Çw]

= ( e F/ m1 a
2)( fm / f1) ¡ 1/ (m ¡ 1) cos[( x / a ) s ]

Èv + e [k21v + k22u + k23w + d21 Çv + d22 Çu + d23 Çw]

= ( e F/ a 2) cos[( x / a ) s ] (3)

Èw + (1 + e k )w

+ e [wn + k31v + k32u + k33w + d31 Çw + d32 Çu + d33 Çv] = 0

where the force P(t) = e F cos( x s ) actingonmass m1 is assumedto
be harmonic and of small amplitude and the coef® cients in Eqs. (3)
are de® ned as follows:

k11 = ¡
k

m1m
2
2 l 1 a 2

a, k12 =
k

m2
2 l 1 a 2
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k

m2 a 2
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m2
2 l 1

)
d12 = ¡
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m2 a
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Differentiation in Eqs. (3) is now with respect to the new time vari-
able s . We note that the parameter k in the preceding relations

provides a measure of the detuning between the linear frequency
of the relative motion and the linear frequency of the intermediate
mass, whereas the parameter a is a measure of the relative strength
of the nonlinear vs the linear coef® cient in f (y).

For e = 0, Eqs. (3) represent two uncoupled linear oscillators
with identical natural frequencies equal to unity and a rigid body
motion governed by v. We now study the response of Eqs. (3) for
small (but nonzero) e . To this end, we introduce the new scaled time
variable Ãt = Åx s and the following relation for the frequency of the
harmonic excitation:

Åx = x / a = 1 + e r (4)

where r is a frequency detuning parameter. Relation (4) repre-
sents a challenging vibration isolation problem because the forc-
ing frequency is assumed to be in the neighborhood of the two
linearized natural frequencies of Eqs. (3). Under such conditions,
large-amplitude oscillations are anticipated for w and the problem
of vibration isolation is challenging. However, as we show subse-
quently, even under such demanding conditions, nonlinear local-
ization can provide a valuable tool for ensuring small steady-state
responses of w over wide frequency ranges.

Taking into account Eq. (4), applying the chain rule of differenti-
ation, and keeping terms only up to O( e ), we rewrite the equations
of motion as

u 0 0 + u + e [2r u 0 0 + um + k11v + k12u + k13w + d11u 0

+ d12v 0 + d13w 0 ] = e B cos(Ãt )

v 0 0 + e [2 r v 0 0 + k21v + k22u + k23w + d21v 0 + d22u 0 + d23w 0 ]

= ( e F/ a ) cos(Ãt ) (5)

w 0 0 + (1 + e k )w + e [2 r w 0 0 + wn
+ k31v + k32u + k33w

+ d31w 0 + d32u 0 + d33v 0 ] = 0, B = (F/ m1 a
2) a

where primes denote differentiation with respect to the new time
Ãt = x s . Applying the method of multiple time scales,18 we expand
u, v , and w in the following form:

u(Ãt ) = u0(T0, T1 , . . .) + e u1(T0, T1, . . .) + ¢ ¢ ¢
v(Ãt ) = v0(T0 , T1, . . .) + e v1(T0, T1, . . .) + ¢ ¢ ¢ (6)

w(Ãt ) = w0(T0, T1 , . . .) + e w1(T0 , T1, . . .) + ¢ ¢ ¢
where the slow and fast time scales are de® ned as Ti = e i Ãt. The
derivatives in Eqs. (5) are expressed with respect to the slow and
fast time scales as

d( ² )

dÃt = D0 + e D1 and
d2( ² )

dÃt 2 = D2
0 + 2 e D0 D1 + O( e 2)

(7)

where Di = @( ² )/ @Ti . Substituting Eqs. (6) and (7) into Eqs. (5)
and setting the coef® cients of like powers of e equal to zero, we
obtain a series of subproblems governing successive orders of ap-
proximation.

The leading-order approximation to the dynamic responses are
governed by the following linear equations that are obtained by
considering the O( e 0) terms in Eqs. (5):

D2
0u0 + u0 = 0

D2
0v0 = 0 (8)

D2
0w0 + w0 = 0

The solutions of this set are given by

u0(T0 , T1) = A(T1)e j T0 + ÅA(T1)e ¡ j T0

v0(T0 , T1) = B1(T1)T0 + B2(T1) (9)

w0(T0, T1) = C(T1)e
j T0 + ÅC (T1)e ¡ j T0
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where A, C , and Bi are complex functions of the slow time scale
T1 and the overbar represents the complex conjugate. These slowly
varying functions are computed by proceeding to the next order of
approximation taking into accountO( e 1) terms in Eqs. (5),

D2
0u1 + u1 = ¡ 2D0 D1u0 ¡ k12u0 ¡ 2r D2

0u0 ¡ k11v0 ¡ k13w0

¡ um
0 ¡ d11 D0u0 ¡ d12 D0v0 ¡ d13 D0w0 + B cos(T0)

D2
0v1 = ¡ k22u0 ¡ 2D0 D1v0 ¡ 2r D2

0v0 ¡ k21v0 ¡ k23w0

(10)

¡ d22 D0u0 ¡ d21 D0v0 ¡ d23 D0w0 + (F/ a 2) cos(T0)

D2
0w1 + w1 = ¡ k32u0 ¡ k31v0 ¡ 2D0 D1w0 ¡ k33w0

¡ 2 r D2
0w0 ¡ w n

0 ¡ k 1w0 ¡ d32 D0u0 ¡ d33 D0v0 ¡ d31 D0w0

Substituting the solutionsof the linear system (9) into Eqs. (10) and
simplifying yields

D2
0u1 + u1 = [¡ 2 j A 0 ¡ (k12 ¡ 2 r + jd11) A ¡ (k13 + jd13)C

¡ m f A(m + 1)/ 2 ÅA(m ¡ 1)/ 2 + (aF/ 2)]e j T0 + cc

¡ k11(B1T0 + B2) ¡ d12 B1 + NST

D2
0v1 = [ ¡ k22 A ¡ jd22 A ¡ k23C ¡ jd23C + (m1 f / 2)]e j T0

(11)
+ cc ¡ 2B 0

1 ¡ k21(B1T0 + B2) ¡ d21 B1

D2
0w1 + w1 = [¡ 2 jC 0 ¡ (k33 ¡ 2r + jd31 + k )C

¡ (k32 + jd32)A ¡ n f C (n + 1)/ 2 ÅC (n ¡ 1)/2
]e

j T0 + cc

¡ k31(B1T0 + B2) ¡ d33 B1 + NST

where

m f =
m!

[(m + 1)/ 2]! [(m ¡ 1)/2]!

n f =
n!

[(n + 1)/ 2]! [(n ¡ 1)/2]!

and where cc stands for the complex conjugate of the preceding
terms and NST stands for nonsecular terms.18, 19 To ensure that the
series in Eqs. (7) is uniformly valid for all times Ãt , the terms B1 , B2,
and the secular terms in Eqs. (11), i.e., the terms on the right-hand
sides that lead to unbounded responses, must be set equal to zero.
Hence, we obtain the following set of solvability conditions gov-
erning the slow time evolutions of the complex amplitudes:

¡ 2 j A 0 ¡ (k12 ¡ 2 r + jd11)A ¡ (k13 + jd13)C

¡ m f A(m + 1)/ 2 ÅA(m ¡ 1)/ 2 + (B/2) = 0

B1(T1) = B2(T1) = 0 (12)

¡ 2 jC 0 ¡ (k33 ¡ 2 r + jd31 + k )C ¡ (k32 + jd32) A

¡ n f C
(n + 1)/2 ÅC (n ¡ 1)/ 2

= 0

from which we conclude that v0 = 0. Introducing the polar repre-
sentation

A(T1) = 1
2
a1(T1)e

j b 1 (T1) and C(T1) = 1
2
a3(T1)e

j b 3(T1)

(13)

where ai (T1) and b i (T1) are real functions of T1, into Eqs. (12) and
separatinginto real and imaginaryparts, we obtain the following set
of modulation equations governing the amplitudes and phases:

a 0
1 + 1

2
k13a3 sin c + 1

2
d11a1 + 1

2
d13a3 cos( b 3 ¡ b 1)+ (B/ 2) sin b 1 = 0

a 0
3 ¡ 1

2
k32a1 sin c + 1

2
d31a3 + 1

2
d32a1 cos( b 3 ¡ b 1) = 0

¡ a1 b 0
1 + 1

2
k12a1 ¡ r a1 + 1

2
k13a3 cos( b 3 ¡ b 1) + m f (a1/ 2)m

(14)

¡ 1
2
d13a3 sin( b 3 ¡ b 1) ¡ (B/2) cos b 1 = 0

¡ a3 b 0
3 +

1
2
k33a3 ¡ r a3 +

1
2
k32a1 cos( b 3 ¡ b 1) + n f (a3/ 2)n

+ 1
2
d32a1 sin( b 3 ¡ b 1) + 1

2
k a3 = 0

First, we investigate the structure of the NNMs of the undamped
and unforced system. These nonlinear oscillationsare analogous to
the normal modesof classicallinearvibrationtheoryandcorrespond
to synchronous motion of the system.11 The study of the NNMs of
the system is performedfor two main reasons:1) to demonstratethat
the systemofFig. 1 canbe designedto possess localizedNNMs with
correspondingenergies mainly con® ned to the USS and away from
the LSS (which we want to isolate) and 2) to gain an understanding
of the structure of the resonance curves of the forced and damped
system. Indeed, the nonlinear resonancesof the forced and damped
system are expectedto occur in neighborhoodsof NNMs,11 in direct
similarity to linear vibration theory.

Hence, we set the ci and P (or equivalently, the di j and F) equal
to zero in Eqs. (14), which yields

a 0
1 + 1

2
k13a3 sin c = 0 (15a)

a 0
3 ¡ 1

2
k32a1 sin c = 0 (15b)

a1a3 c 0 ¡ 1
2
a1a3(k33 ¡ k12) ¡ 1

2
k 1a1a3 + m f a3(a1/2)m

¡ n f a1(a3/ 2)n
+

1
2
(k13a2

3 ¡ k32a2
1
) cos c = 0 (15c)

where c = b 3 ¡ b 1. This is an autonomous system of equations
whose stationary solutions (corresponding to a 01 = a 03 = c 0 = 0)
yield the O(1) approximations to the NNMs of the unforced and
undamped system.

Combining Eqs. (15a) and (15b), we obtain the relations

k32a 0
1a1 + k13a 0

3a3 = 0 ) k32a2
1 + k13a2

3 = q 2

or

a2
1[k32 + k13c

2] = q 2 (16)

where q 2 is a constant of integration representing the (conserved)
energy of the undamped unforced system and c = a3/ a1. Imposing
the stationaryconditionson Eqs. (15),we obtain the followingequa-
tion governing the ratio of the amplitudes a3 and a1 on a nonlinear
normal mode of the system:

f k 1 + k33 ¡ k12 §[k32(1/c) ¡ k13c]g (k32 + k13c
2)

(m ¡ 1)/2

+n f (
1
2
q c) n ¡ 1

(k32 + k13c2) (m ¡ n)/ 2

¡ m f (
1
2
q )m ¡ 1

= 0

c = k p , k = 0, 1, 2, . . . (17)

De® ning

L =
k + k33 ¡ k12

k32

, l =
m3(m1 + m2)

m1m2
£ ( fm

f1 )
¡ 2/ (m ¡ 1)

and

g =
q

k32

and noting that k13 = l a2k32, we rewrite expression (17) in the
following nondimensional form:

[cL§(1 ¡ l a2c2)](1+ l a2c2)(m ¡ 1)/ 2+n f (g / 2)(n ¡ 1)k
(n ¡ 3)/ 2
32

£ cn(1 + l a2c2)(m ¡ n)/ 2 ¡ m f (g / 2)(m ¡ 1)k
(m ¡ 3)/2
32 c = 0

c = k p , k = 0, 1, 2, . . . (18)

Equation (18) governs [correct to O(1)] the ratios of the amplitudes
of u and w on an NNM of the unforced and undamped system of
Fig. 1. Regarding the parameters in Eq. (18), L is a nondimensional
structural detuning, l is a nondimensional mass ratio, and g is a
nonlinearity to coupling ratio (because the strength of the nonlin-
earities of the system is a function of the level of energy q and
k32 is a nondimensionalcoupling stiffness).Based on the preceding
analysis, the + and ¡ signs in Eq. (18) correspond to even or odd
multiples of p for c .

In Fig. 2a, we graphically depict the amplitude ratio c vs the
detuning parameter L for k32 = 1, m = n = 3, l = 1, and varying
values of g (without loss of generality, the phase difference is set
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a) Dependence of the modal ratio c on ´

b) Dependence of c on the degrees of nonlinearity m and n for the
strongly localized NNM

Fig. 2 NNMs of the system: a) m = 3, n = 3, ¹ = 1, k32 = 1 and b) (1),
m = 0 and n = 0 (linear case); (2), m = 3 and n = 3; (3), m = 5 and n = 3;
(4), m = 7 and n = 3; and (5), m = 9 and n = 3.

equal to c = 0).Note that the ratioof thenonlinearityto thecoupling
parameter greatly affects the structure of the NNMs of the system:
for g = 0 (the linear case) the system possesses the linear normal
modes,whereasfor increasingg , a bifurcationoccursand the system
possesses four NNMs. For negative values of L and large g , one
branch of NNMs becomes strongly localized to the USS of the
system because it corresponds to small values of c. Although such
a localization occurs also in the linear system (with g = 0), the
stiffness nonlinearitiesgreatly enhance it. This is shown in Fig. 2b,
where the aforementionedlocalized branch is depicted in a decibel
scale for k32 = 1, l = 5, g = 3, and various degrees of USS and
LSS stiffnessnonlinearitiesm and n (m = n = 0 correspondsto the
linear system). A perturbationanalysis shows that for the localized
NNM branch c is approximately given by

c ¼
1

L ¡ m f ( 1
2
)m ¡ 1

k
(m ¡ 3)/2
32 g m ¡ 1

which depends on the nonlinearity of the USS. From Fig. 2b we
note that as m and n increase the localization greatly increases.
Moreover, the strengthof localizationdependsmainly on the degree
of nonlinearity n of the USS and not so much on the nonlinearity
of the LSS. As a result, the motion is spatially con® ned to the USS,
and the oscillationof the LSS becomesnegligiblysmall. It is evident
that such a localized NNM guarantees enhanced vibration isolation
for the nonlinear system compared to the linear one.

The preceding results demonstrate that the system under consid-
erationcan be designedto possessa localizedNNM with vibrational
energy mainly con® ned to the USS and away from the main body
to be isolated. As will be shown, the localized NNM gives rise to
localized resonances of the forced and damped system and, thus,
to improved vibration isolation of the system under periodic forc-
ing. Reconsider Eqs. (14) with nonzero ci and F . The nonlinear
resonances of the system are obtained by imposing the stationarity
conditions a 01 = a 03 = 0 and b 01 = b 03 = 0, which are necessary for
steady-stateperiodic oscillationsof the system. The resulting set of
four nonlinear algebraic equations is given by

1
2
k13a3 sin c + 1

2
d11a1 + 1

2
d13a3 cos( b 3 ¡ b 1) + (B/2) sin b 1 = 0

¡ 1
2
k32a1 sin c + 1

2
d31a3 + 1

2
d32a1 cos( b 3 ¡ b 1) = 0

1
2
k12a1 ¡ r a1 + 1

2
k13a3 cos( b 3 ¡ b 1) + m f (a1/ 2)m

(19)

¡ 1
2
d13a3 sin( b 3 ¡ b 1) ¡ (B/ 2) cos b 1 = 0

1
2
k33a3 ¡ r a3 + 1

2
k32a1 cos( b 3 ¡ b 1) + n f (a3/2)n

+ 1
2
d32a1 sin( b 3 ¡ b 1) + 1

2
k a3 = 0

They are solved numerically to obtain the amplitudes and phases
of the nonlinear resonances. These equations are analogous to
relations (15) of the unforced, undamped case. Once the stationary
values for the amplitudesand phases are computed, the steady-state
responses are approximated as follows:

u(t ) = a10 cos[(1 + e r ) a t + b 10] + O( e )

v(t ) = O( e ) (20)

w(t ) = a30 cos[(1 + e r ) a t + b 30] + O( e )

where subscripts 0 denote stationary values. The effectiveness of
the vibration isolation is judged by the smallness of the amplitude
a30 of the steady-state oscillation of the LSS of the system because
only then is the level of transmitted vibration to the ground of Fig. 1
small.

A numericalexample is performedto show the effect of nonlinear
mode localization on the structure with steady-state motions near
the linearized resonances. The stability of solutions is computed
by ® nding the eigenvalues of the Jacobian matrix of the evolution
equations (19). The branches of the nonlinear resonances of the
system with the parameters

m = 9, n = 3, k = 21.0225, f1 = 1, f3 = 4

m1 = 1, m2 = 2.53554, m3 = 5.07108
(21)

c1 = 4.5, c2 = 3.5, c3 = 5.0, k = ¡ 8.79123

g = 3, L = ¡ 7.5, B = 10, and e = 0.030

are shown in Fig. 3. These curves are generated by numerically
solving Eqs. (20) while varying the frequency detuning r of the
external excitation. The dotted lines represent the corresponding
backbonecurves18 that depict the variationof the ratio c vs r for the
undamped, unforced case. The solid lines represent stable motions
that correspondto periodicoscillationsof Eqs. (1). The dashed lines
represent solutions that are unstable and, thus, not physicallyrealiz-
able. The onset of the unstable region occurs througha saddle-node
bifurcation.This system possessesa strongly localizedNNM whose
backbone curve originates near r = 0.84 and a nonlocalizedNNM
with a backbone curve beginning near r = ¡ 2.74.

With this example we have demonstrated that nonlinear mode
localization, induced by designing a system with passive nonlinear
springs, gives rise to localized steady-statemotion in the frequency
range close to the correspondinglocalized backbone curve. On this
branch, the steady-state amplitude a3 of the LSS is small, whereas
the corresponding amplitude a1 of the USS is orders of magni-
tude higher (magnitude of a1 is on the same order of magnitude as
wouldbe the linear response).In the frequencyrangeof the localized
branch, the steady-state oscillations of the forced system are spa-
tially con® ned mainly to the upper substructure,leading to enhanced
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Fig. 3 Nonlinear resonances of the system with a strongly localized
NNM and the parameters m = 9, n = 3, k = 21.0225, f1 = 1, f3 = 4,
m1 = 1, m2 = 2.53554, m3 = 5.07108, c1 = 4.5, c2 = 3.5, c3 = 5.0,
¸ = ¡ 8.79123, ´ = 3, L = ¡ 7.5, B = 10, and " = 0.030: solid
and dashed lines denote stable and unstable quasiperiodic steady-state
motions, respectively, and dotted lines indicate the backbone curves.

Fig. 4 Time history response for the system with the same parameters
as in Fig. 3 and ¾ = 0, 12, and 25.

vibration isolation and therefore substantially smaller motions for
the lower substructure.

To validate the perturbation analysis, the original equations of
motion (1) are numerically integrated with this set of parameters
and initial conditionsclose to the values obtained in the analysis. In
Fig. 4 the time traces of displacement u and w for three different r
are shown. At r = 0, the amplitude of a1 begins to grow, whereas
the amplitude of a3 has begun to decay. At r = 12, the system is at
its greatest point of localizationso the amplitude of a1 is large, i.e.,
the USS is vibrating with the same order of magnitude as the linear
system, yet the amplitude of a3 is extremely small, as predicted
by the perturbation analysis. Last, at r = 25, a jump has already
occurred, so the system has settled back to small linear motions
away from resonance.

The preceding analysis proves that the system under considera-
tion can be designed to possess localized NNMs, which, in turn,
can lead to improved vibration isolation performance. In the next
section we develop an optimizationprocedure to compute the set of
systemparameters,i.e.,masses,dampers,and stiffnesses,thatgener-
ate an optimally localized motion over a speci® ed frequency range.
The optimization analysis will be carried out using the method of
harmonic balance.19

Optimization Analysis
To simplify the algebra involved in the analysis, we introduce

a different nondimensionalization from that used earlier. Hence,
considering the original Eqs. (1), we de® ne the following nondi-
mensional quantities:

Åx1 = x1/ l, Åx2 = x2/ l, Åx3 = x3/ l, s = Åx t (22)

where l is the undeformed position of mass m3 (cf. Fig. 1) and Åx is
a characteristic frequency. Substituting Eqs. (12) into Eqs. (1) and
simplifying yields

Åx 0 0
l +

c1

m1 Åx
( Åx 0

1 ¡ Åx 0
2) +

1

lm1 Åx 2
Ãf ( Åx1 ¡ Åx2) =

P( s )

lm1 Åx 2

Åx 0 0
2 +

c1

m2 Åx
( Åx 0

2 ¡ Åx 0
1) +

1

lm1 Åx 2
Ãf ( Åx2 ¡ Åx1)

+
Åk

m2 Åx 2
( Åx2 ¡ Åx3) +

c2

m2 Åx
( Åx 0

2 ¡ Åx 0
3) = 0 (23)

Åx 0 0
3 +

c3

m3 Åx
Åx 0
3 +

c2

m3 Åx
( Åx 0

3 ¡ Åx 0
2)

+
1

lm3 Åx 2
Ãg( Åx3) +

Åk
m3 Åx 2

( Åx3 ¡ Åx2) = 0

where the prime denotes the derivative with respect to the nondi-
mensional time s . The optimization technique is developed for the
case of cubic nonlinearities, and it can be similarly extended to
higher-degree nonlinearities. Thus, we assume that the nonlinear
stiffnesses are given by

Ãf (y) = Åa 1ly + Åa 3l
3 y3, Ãg(y) = Åc 1ly + Åc 3l

3y3 (24)

Setting

Åa 1 = lm1 Åx 2 , a 3 =
Åa 3l

2

Åa 1

, c 1 =
m1

m3

Åc 1

Åa 1

, c 3 =
m1l

2

m3

Åc 3

Åa 1

(25)

and substituting the result into Eqs. (23), we obtain

Åx 0 0
1 + l 1( Åx 0

1 ¡ Åx 0
2) + Åx1 ¡ Åx2 + a 3( Åx1 ¡ Åx2)

3 = ÃP( s )

Åx 0 0
2 + M12 l 1( Åx 0

2 ¡ Åx 0
1) ¡ M12( Åx1 ¡ Åx2) ¡ M12 a 3( Åx1 ¡ Åx2)3

+ k M12( Åx2 ¡ Åx3) + l 2( Åx 0
2 ¡ Åx 0

3) = 0 (26)

Åx 0 0
3 + l 3 Åx 0

3 + M23 l 2( Åx 0
3 ¡ Åx 0

2) + c 1 Åx3

+ c 3 Åx3
3 + kM12 M23( Åx3 ¡ Åx2) = 0
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where

M12 = m1/ m2 , M23 = m2/ m3 , k = Åk/l Åa 1

l 1 = (c1/ m1) Ï m1/ Åa 1 , l 2 = (c2/ m3) Ï m1/ Åa 1 (27)

l 3 = (c3/ m3) Ï m1/ Åa 1

To further simplify the analysis, we introduce the coordinate trans-
formations u = Åx1 ¡ Åx2, w = Åx3 , and v = M12 Åx1 + Åx2. Hence, u
represents the relativemotion inside the USS, v is a scaled displace-
ment of the center of gravity of the USS, and w is the motion of the
LSS. Then, the equations governing u, v , and w are given by

u 0 0 + [ l 1(1 + M12) +
M12

1 + M12

l 2]u 0 ¡
l 2

1 + M12

v 0 + l 2w 0

+ ( 1 + M12 +
M2

12k

1 + M12
) u ¡

M12k

1 + M12

v + kM12w

+ (1 + M12) a 3u
3 = ÃP( s )

v 0 0 ¡
M12 l 2

1 + M12

u 0 +
l 2

1 + M12

v 0 ¡ l 2w 0 ¡
M2

12k

1 + M12

u (28)

+
M12k

1 + M12

v ¡ kM12w = M12
ÃP( s )

w 0 0 +
M12 M23 l 2

1 + M12

u 0 ¡
M23 l 2

1 + M12

v 0 + ( l 3 + M23 l 2)w 0

+
M23 M2

12k

1 + M12

u ¡
M23 M12k

1 + M12

v + ( c 1 + M23 M12k)w + c 3w3 = 0

Applying the method of harmonic balance,19 we express the
steady-stateperiodic solution of Eqs. (28) in terms of a sum of har-
monics as

xi =
N

Sm = 1

Ami cos[m( x s + b 0)] (29)

where i = 1, 2, 3. SubstitutingEq. (29) into the equationsof motion
and equating the coef® cients of identical harmonics to zero, we
obtain a set of m £ i algebraic equations governing the amplitudes
Ami . These equations are usually solved for x and Ami in terms of
A11 to yield the equations that describe the steady-state response of
the system.

As in the preceding section, we consider ® rst the undamped and
unforced system to determine the structureof its NNMs. Hence, we
set l i and ÃP(t ) = 0 in Eqs. (28) and consideronly the ® rst harmonic
in Eq. (29) to computea leading-orderapproximationto the solution.
Thus, we seek a solution in the form

u = a1 cos( x s ) v = r1u w = r2u (30)

We note that r2 representsthe ratio of the amplitudesof w to u, and it
is the quantity that we want to minimize. The quantity r1 represents
the ratio of the amplitudes of v to u. Substituting Eqs. (30) into
Eqs. (28) and equating the coef® cients of cos( x s ) equal to zero, we
obtain the following nonlinear algebraic relations:

a1[1 + M12 +
M 2

12k

1 + M12
+

3

4
(1 + M12) a 3a2

1

+
M12k

1 + M12

r1 + M12kr2 ¡ x 2] = 0

a1[ ¡ M 2
12k

1 + M12
+

M12k

1 + M12

r1 ¡ x 2r1 ¡ M12kr2] = 0 (31)

a1[ M2
12 M23k

1 + M12
¡

M12 M23k

1 + M12

r1

+ ( c 1 + M12 M23k ¡ x 2)r2 +
3

4
c 3a

2
1r 3

2] = 0

There are two possible solutions:a1 = 0 (which is a trivial solution)
and

r1 =
M12k[M12 + (1 + M12)r2]

M12k ¡ (1 + M12) x 2
(32a)

a2
1 =

4

3

M12k ¡ [1 + M12(1 + k) ¡ x 2 + M12kr2]x 2

a 3[(1 + M12) x 2 ¡ M12k]
(32b)

where r2 is governed by

{c 1 x
2 ¡ x 4(1 + M12) + [M12( x

2 ¡ c 1
) + M23(1 + M12)]k}r2

+ ( c 3/ a 3){M12k ¡ [1 + M12(1 + k)]x 2}r 3
2

¡ ( c 3/ a 3)M12k x 2r 4
2 + M 2

12 M23k x 2 = 0 (32c)

Equations (32a) and (32b) can be used to compute the ratio r1 and
the amplitude a1 as functions of the frequency x . Equation (32c)
governs the dependence of the ratio r2 on the frequency and the
system parameters.The design objective is to minimize the transfer
of energy from the USS to the LSS of the system or, equivalently,
to minimize the ratio r2 . Hence, to induce the optimal localization
properties into the system, one needs to minimize the number and
magnitudes of the real roots of Eq. (32c) over a speci® ed frequency
range. Minimizing the number of real roots minimizes the number
of NNMs and, thus, the number of nonlinear resonance branches.

In what follows, we apply the method of constrained variation20

to minimize the quantity

f =
N

S i = 1

[r2i ( x i )]
2 (33)

where the r2i are solutionsof Eq. (32c) at the discrete frequencies x i

where the optimizationis performed.The parametersk, a 3, Mi j , and
c i in Eq. (32c) are considered as the design variables whose values
are computed by the optimization routine, whereas the variable x
representsthe frequencyat which theoptimizationis performed.The
optimization is performed using the IMSL routine DNCONF21 that
employs the successive quadratic programming method developed
by Schittkowski.22 The constraint equation (32c) is nonlinear and
results in a plethora of locally minimal optimized solutions. These
local minima depend on the initial guesses and may not re¯ ect the
best global optimizationpossible.Hence, to increase the probability
of ® nding a true optimized result, random sets of initial guesses are
generated and used to start the optimization routine. In Table 1, the
results of three such optimizationruns are summarized.Cases 1 and
2 represent fairly good optimization results, and case 3 represents a
poor result.

Although a formal sensitivity analysis is not performed, the au-
thors note that the small optimized value of k M12 is consistentwith
previous works on linear and nonlinear localization where it was
found that a prerequisite for localization in a system composed of
substructuresis weak couplingstiffness.The NNMs of the unforced
and undamped system of case 2 are depicted in Fig. 5 as functions
of the frequency.For x < 1.0788, Eqs. (35) possess only the trivial
solution. At x = 1.0788, a bifurcation occurs and the two NNMs
depicted in Fig. 5 develop. Similar curves were generated for cases
1 and 3, but in the interest of space are omitted. The differences
in magnitude of the NNMs for cases 1±3 are the same as those
predicted by the value of f in the optimization.

Table 1 Optimization results with f minimized at four discrete
frequencies; !i = 1.00, 1.1, 1.2, 1.5

Results
Lower Upper

Parameter bound bound Case 1 Case 2 Case 3

kM12 0.00001 10.0 0.0001430 0.0001 1.31722
M12 0.1 3.0 0.12001 0.16389 0.1000
M23 0.1 100.0 28.3284 18.1690 0.1000
c 1 0.1 100.0 187.6287 95.2359 172.6641
c 3/ a 3 ¡ 60.0 60.0 ¡ 35.6760 6.51466 4.23117
f 0.2248 0.2942 0.3975

£ 10¡ 10 £ 10¡ 12 £ 10¡ 4
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a) Amplitude of a1

b) Amplitude of a2

c) Amplitude of a3

Fig. 5 Backbone curves of the unforced and undamped system of
case 2.

After optimizing the NNMs and inducing optimal localization
properties, we compute the steady-state responses of the opti-
mized system by considering Eqs. (28) with l i 6= 0 and ÃP( s ) =
F cos( x s ). Assuming a solution of the form

u = a1 cos( x s ) + b1 sin( x s )

v = a2 cos( x s ) + b2 sin( x s ) (34)

w = a3 cos( x s ) + b3 sin( x s )

(where the sine and cosine terms are used due to the presence
of damping), substituting into Eqs. (28), and equating the coef® -
cients of cos( x s ) and sin( x s ) to zero, we obtain the following
algebraicequations,whichare analogousto theunforced,undamped
relations (31):

a1( 1 + M12 +
kM2

12

1 + M12
¡ x 2) ¡ a2

kM12

1 + M12

+ b1[ l 1(1 + M12) +
l 2 M12

1 + M12
] x + a3kM12 + b2

l 2 x

1 + M12

+ b3 l 2 x +
3

4
a 3(1 + M12)(a

3
1 + a1b

2
1
) ¡ F = 0

¡ a1[ l 1(1 + M12) +
l 2 M12

1 + M12
] x + a2

l 2 x

1 + M12

+ b1( 1 + M12 +
kM2

12

1 + M12
¡ x 2) ¡ a3 l 2 x + b2

kM12

1 + M12

+ b3kM12 +
3

4
a 3(1 + M12)(b3

1 + a2
1b1

) = 0

a) Magnitude of u in dB

b) Magnitude of v in dB

c) Magnitude of w in dB

Fig. 6 Resonance curves of the forced and dampedsystem with param-
eters of case 2 and F = 0.1, ¹1 = 0.001, ¹2 = 0.001, and ¹3 = 0.001;
solid and dashed lines denote stable and unstable steady-state motions,
respectively, and dotted lines represent the corresponding linear re-
sponse.

¡ a1

kM2
12

1 + M12
+ a2

kM12

1 + M12
¡ a3kM12 ¡ b1

l 2 M12

1 + M12

x

+ b2

l 2

1 + M12

x ¡ b3 l 3 x ¡ M12 F = 0

a1

l 2 M12

1 + M12

x ¡ a2

l 2

1 + M12

x + a3 l 3 x ¡ b1

kM2
12

1 + M12

+ b2

k M12

1 + M12
¡ b3kM12 = 0

a1

kM2
12 M23

1 + M12
¡ a2

kM12 M23

1 + M12
+ a3( c 1 + k M12 M23 ¡ x 2)

+ b1

l 2 M12 M23

1 + M12

x ¡ b2

l 2 M23

1 + M12

x + b3( l 3 + l 2 M23) x

+
3

4
c 3(a

3
3 + a3b

2
3
) = 0

¡ a1

l 2 M12 M23

1 + M12

x + a2

l 2M23

1 + M12

x ¡ a3( l 3 + l 2 M23) x

+ b1

k M2
12 M23

1 + M12
¡ b2

kM12 M23

1 + M12
+ b3( c 1 + k M12 M23 ¡ x 2)

+
3

4
c 3(b

3
3 + a2

3b3
) = 0 (35)
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a) Magnitude of u in dB

b) Magnitude of v in dB

c) Magnitude of w in dB

Fig. 7 Resonance curves of the forced and dampedsystem with param-
eters of case 3 and F = 0.1, ¹1 = 0.001, ¹2 = 0.001, and ¹3 = 0.001;
solid and dashed lines denote stable and unstable steady-state motions,
respectively, and dotted lines represent the corresponding linear re-
sponse.

These equations were solved numerically with the parameters
listed in Table 1 and a 3 = 0.001, F = 0.1, l 1 = 0.001, l 2 = 0.001,
and l 3 = 0.001. The stability of the solutions was obtained using
Hill’ s in® nite determinant.19 The forced response of the system for
case 2 is shown in Fig. 6, where the solid-dashed line represents
the nonlinear response, and the dashed line represents the linear
response.Similarly, the forced responseof case 3 is shown in Fig. 7.
For all cases, the amplitudeof w is orders of magnitudesmaller than
that of u or v (notice that the vertical scale in the plots is in decibels).
In addition,theeffectof thenonlinearityis to attenuatethemaximum
amplitudes of the linear resonances.

Finally, to verify that the use of a single harmonic expansion is
suf® cient for capturing the dynamics of the system, we numerically
integrated Eqs. (28) with initial conditions identical to the theoret-
ical predictions for steady-state motions corresponding to case 2.
The integration was performed using a ® fth-order Runge±Kutta23

with error tolerance set to 1 £ 10 ¡ 12 and an adaptive time step. The
amplitudes of the responses in each case are nearly those predicted
by the single-harmonic expansion, and in addition, the frequency
content of the numerical time responses appear to contain only one
harmonic. These results indicate that the use of a single harmonic
in the theoretical analysis is justi® ed. The results of one of the nu-
merical integrations is presented in Fig. 8. The initial conditions
used correspond to x = 1.5002 with initial conditions on the un-
stable branch. We expect the solution shown to be unstable, and the
simulation agrees with our theoretical prediction. In fact, had we
allowed the integration to proceed for a longer time, the response
would have settled to that of the lower stable branch.

Fig. 8 Unstable steady-state response of the system with parameters
of case 2, != 1.5002, and initial conditions on the unstable branch (cf.
Fig. 8).

Conclusions
In this study, we have shown that the use of nonlinear stiffnesses

can greatly enhance the vibration isolation properties of a passive
mechanical isolator. Indeed, such a system can be designed to pos-
sess stable localized NNMs with most of their energy con® ned to
a predetermined subsystem, away from the main body that needs
to be isolated. When isolators with localized NNMs are subjected
to harmonic excitations, in certain frequency ranges, the resulting
resonancesbecome similarly localized, and the level of transmitted
undesirable vibrations is greatly reduced. Hence, nonlinear local-
ization can provide a valuable tool for developing improved vi-
bration and shock isolation designs, otherwise unattainable using
linear stiffness elements. In addition, we have developeda new de-
sign technique to optimize systematically the localized NNMs of
the isolator. This is performed by localizing the vibrational energy
of the isolator in a way that is compatible and bene® cial to the
vibration isolation objectives. Following the outlined optimization
procedure,we alter the solution space describing the dynamics and
ensure minimal transfer of unwanted disturbances.
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